
REVIEWS

A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke:
Pathology and Mechanisms

Ying Xing1
& Yulong Bai1

Received: 24 May 2020 /Accepted: 8 July 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are
associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connec-
tions, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible
rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of
neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves
motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins,
improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural
regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue.
We also discuss some common exercise strategies and a novel exercise therapy, robot-assistedmovement, whichmight be widely
applied in the clinic to help stroke patients in the future.
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Introduction

Stroke is a cerebrovascular disease characterized by high mor-
bidity, mortality, and disability. The occurrence rate of acute
first-ever ischemic stroke is higher than that of acute first-ever
hemorrhagic stroke in terms of the Global Burden of Disease
(GBD) 2015 study [1]. In 5-year post-stroke survivors, two-
thirds showed good functional outcome in neurologic deficit
and disability, 20% underwent a second stroke, 22.5%
showed dementia symptoms, 29.6% showed depression, and
approximately 15% were institutionalized [2]. The symptoms
after ischemic stroke are associated with the disruption of
normal neuronal function, i.e., interhemispheric connections
and synaptic activity, due to neuronal death in the ischemic
core and hence the disruption of the normal neural circuit
[3–5]. The recovery processes induced by various therapies
often involve spared axonal sprouts that contribute to

establishing new circuits by innervating denervated target re-
gions [6–8]. That is, functional recovery after ischemic stroke
is related to neuroplasticity.

Neuroplasticity is defined as structural and functional
changes in the brain that enable adaptation to learning, mem-
ory, the environment, and rehabilitation following brain dam-
age. It is a dynamic process involving alterations in the num-
ber of brain nuclei and structures, numerous functions, and
various interactions [9–11]. Although there are spontaneous
remodeling changes that occur after brain injury following
ischemic stroke, these changes are not sufficient to produce
obvious functional recovery [7]. In the normal and injured
brain, rehabilitation can promote dynamic processes in the
nervous system to allow adaptation to different experiences
[12, 13]. Thus, based on neuroplasticity research, it is very
important to find an effective method for the rehabilitation
and treatment of brain injury following ischemic stroke.

Exercise is considered an effective and feasible rehabilita-
tion strategy for improving cognitive and motor functional
recovery through the facilitation of neuroplasticity such as
through increases in neuronal activity and the potentiation of
postsynaptic excitation, as well as enhancements in dendritic
spine formation and axonal myelination following ischemic
stroke [14]. Several clinical and animal studies have shown

* Yulong Bai
dr_baiyl@fudan.edu.cn

1 Department of Rehabilitation Medicine, Huashan Hospital, Fudan
University, No. 12 Middle Wulumuqi Road, Jing’an District,
Shanghai 200040, China

Molecular Neurobiology
https://doi.org/10.1007/s12035-020-02021-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-020-02021-1&domain=pdf
http://orcid.org/0000-0003-0461-1506
mailto:dr_baiyl@fudan.edu.cn


significant functional improvement following stroke when re-
habilitation training is performed [15–18]. In an exploratory
study on chronic stroke, physical training exerted significant
effects on mobility, and some patients showed obvious cog-
nition improvements, which were paralleled by cerebral activ-
ity changes that probably reflected neuronal plasticity [19].
The expression of neuroplasticity-relevant genes, such as pro-
tein kinase C (PKC) ζ, N-methyl-D-aspartate (NMDA) 2A
receptor, neurotrophic tyrosine kinase receptor 2 (NTRK 2),
or microtubule-associated protein (MAP) 1b, was significant-
ly changed in rats exposed to both forced arm use and volun-
tary exercise after photothrombotic stroke to improve func-
tional recovery [20]. Therefore, the aim of this review is to
discuss the mechanisms by which neuroplasticity induced by
exercise training improves motor function and cognitive abil-
ity after ischemic stroke.

Nerve Impairments in Stroke
Pathophysiology

Cerebral ischemic stroke is often triggered by embolic or
thrombotic arterial obstruction causing decreased cerebral
blood flow. Thus, a gradient of decreased blood flow emerges,
causing severe tissue injury and blood flow reduction and
resulting in a surrounding penumbra in which degenerative
reactions and blood flow reduction are less extreme [21].
Ischemic stroke causes two primary pathological processes,
namely, oxygen loss and an interruption in glucose supply to
targeted brain areas, triggering a complex molecular cascade
consisting of blood–brain barrier disruption [22], reactive ox-
ygen species (ROS) production [23], excitotoxicity [24], cell
membrane depolarization [25], slowed cellular energy metab-
olism [26], inflammatory responses by activated microglia
[27], and apoptotic cell death [28].

Stroke can also result in bioenergetic collapse and mito-
chondrial dysfunction in neural cells. Bioenergetic collapse
and mitochondrial dysfunction are related to reduced adeno-
sine triphosphate levels and dysfunction of the sodium-
potassium pump, such as dysfunction of sodium-potassium
adenosine triphosphatase (Na+/K+ATPase) and opening of
calcium (Ca2+) channels, further triggering more severe path-
ophysiological disorders, an increase in the depolarization of
the neuronal membrane potential, generation of oxygen free
radicals, excitatory neurotoxicity, etc. [29–32]. Intracellular
Ca2+ homeostasis plays a key role in controlling neuronal
activity, including synaptic plasticity, neurotransmitter re-
lease, and neuronal death [33]. Ca2+ flux triggers synaptic
vesicle endocytosis, which regulates neurotransmitter release
tomaintain synaptic transmission [34, 35]. Hence, the opening
of Ca2+ channels can enhance Ca2+ transfer from the endo-
plasmic reticulum (ER) to mitochondria and further cause ex-
citatory neurotoxicity and neuronal death in ischemia [36, 37].

These impairments following stroke can cause disruption of
neuronal function that is associated with some forms of motor,
sensory, or cognitive impairments that occur in the majority of
survivors after stroke.

During the post-stroke recovery stage, the functional brain
networks spontaneously experience rewiring and reorganiza-
tion of surviving neural networks due to structural lesions that
tend to appear contralateral as well as ipsilateral to the damage
accompanied by functional recovery [38–41]. These sponta-
neous neuroplasticity changes might be associated with path-
ophysiological mechanisms, such as the release of neurotropic
factors [42]; regulation of anti-inflammatory cytokines [43];
nerve regeneration [44]; structural remodeling at the synaptic,
axonal, and dendritic levels [45]; and activation, migration,
and differentiation of endogenous neural stem cells [46].
Spontaneous recovery is also related to associated gene chang-
es in the motor cortices of stroke mice, such as a reduction in
dopamine receptor D2 (Drd2), adenosine receptor A2A
(Adora2a), and phosphodiesterase 10A (Pde10a) expression
in the contralesional cortex [47]. Understanding the mecha-
nisms of neural impairment and remodeling will allow the
exploration of the relationship between neuroplasticity and
exercise rehabilitation.

The Mechanisms
by Which Exercise-Dependent Plasticity
Improves Functional Recovery

Exercise Improves Dendrites and Axons

Dendrites and axons are important components of neurons
and play a crucial role in exercise-dependent neuroplasticity.
The number of dendritic arborizations in the injured cortical
area of rats is significantly lower after ischemic stroke.
Constraint-induced movement therapy (CIMT) can effective-
ly increase dendritic arborizations, particularly in layer III py-
ramidal neurons, and reestablish axonal connections between
the hemispheres [48]. Reach training preceded by running
slightly increases MAP2 expression in the contralateral motor
cortex compared with the ipsilateral cingulate cortex and con-
tralateral sensory cortex, indicating more dendritic branching
in the motor cortex of rats [49]. Brain-derived neurotrophic
factor (BDNF) is formed by the posttranslational modification
of a glycosylated precursor protein, precursor BDNF
(proBDNF), into the mature form, mature BDNF (mBDNF)
[50]. It has been reported that aerobic exercise for 4 weeks
may elevate the ratio of mBDNF/proBDNF in the ischemic
hippocampus of rats [51]. A balance between mBDNF and
proBDNF plays an important role in dendritic spine plasticity
due to the opposing effects of mBDNF and proBDNF on
neural plasticity [52]. Dendritic complexity and the expression
of postsynaptic density 95 (PSD-95) and BDNF are
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significantly enhanced in the bilateral hippocampi of rat sub-
mitted low-intensity exercise compared with sedentary rats,
and spatial memory performance is obviously improved.
High-intensity exercise does not notably improve spatial
memory performance or synaptic plasticity [53].

Axonal plasticity is enhanced after a combination treatment
of task-specific training and infusion of 5-aza-2 ′-
deoxycytidine (an inhibitor of DNA methylation), which
might be a promising approach for promoting functional re-
covery in rats with photothrombotic ischemia in the chronic
stage of stroke [54]. Exercise training facilitates axonal recov-
ery related to the downregulation of Nogo-A/Nogo66
receptor–1 (NgR1)/Rho A in the ischemic area of hyperten-
sive stroke rats [55]. CIMT facilitates axonal growth and im-
proves synaptic plasticity at least partially by overcoming in-
trinsic axonal growth-inhibitory signals to improve behavioral
deficits. The expression levels of Rho A/Rho-associated ki-
nase and Nogo-A/Nogo receptor are significantly downregu-
lated in the denervated cervical spinal cord of rats [56].
Growth-associated protein 43 (GAP-43) is observed in the
axonal extensions of the majority of neurons during neural
development [57]. Exercise may increase the expression of
GAP-43 and PKC, which is related to exercise-induced paral-
ysis recovery. The interaction between GAP-43 and PKC is
associated with the remodeling of cortical connections and
neuronal plasticity in rat with cerebral infarction [58, 59].

In summary, these results are sufficient to indicate that
plastic alterations occur in dendrites and axons. Increased den-
dritic arborization and axonal growth might contribute to
shaping new synaptic connections, thus promoting reorgani-
zation of neural function.

Exercise Facilitates Synaptic Plasticity

Synaptic plasticity is important for neural recovery after brain
injury. Cerebral ischemiamay result in impairment of synaptic
structure involved in the development of functional dysfunc-
tion [60]. It has been reported that synapses in the peri-infarct
area exhibit comparatively intact presynaptic and postsynaptic
membranes and increased synaptic vesicles at the presynaptic
membranes [61]. To date, there is much evidence showing
that the recovery of neurological function underlies synaptic
repair after ischemic stroke [60, 62, 63].

There is an important concept in neurobiology that “neu-
rons fire together, wire together,” which means that the acti-
vation of synapses subserves the formation and maintenance
of synapses [64]. Rehabilitative training may enhance the sta-
bility of new synapses formed during the initial weeks in rats
following brain infarct. The magnitude of stability is related to
improvements in skilled motor performance [65]. There are
obvious but transient enhancements in the synapse-to-neuron
ratio and axospinous synapse density in rats exposed to a
spatial learning task compared with untrained age-matched

rats, and these enhancements are accompanied by transient
reductions in both the postsynaptic density area and mean
synaptic height. Changes in the dentate gyrus are possibly
associated with memory formation [66].

Motor training, especially skill training related to coordina-
tion and balance, contributes to uniquely lateralized synapto-
genesis in the thalamus [67]. Willed-movement training in-
volves training animals to climb the walls or ladder of a device
to reach water and food. It is more beneficial than swimming
or environmental modification in increasing protein
interacting with C kinase 1 protein (PICK)–regulated synaptic
plasticity in the region surrounding the ischemic area in rats
[68]. Here, we discussed some factors involved in exercise-
dependent synaptic plasticity to further understand the mech-
anisms of functional improvement following stroke.

A-Amino-3-Hydroxyl-5-Methyl-4-Isoxazole-Propionate
(AMPA) Receptors

AMPA receptors largely regulate excitatory neurotransmis-
sion and activity-dependent plasticity [69]. The mRNA levels
of GluA1 and GluA4 are markedly increased after willed-
movement intervention in rats in the subacute stage of ische-
mic stroke, improving synaptic transmission and brain plas-
ticity [70]. In our previous study, modified CIMT was shown
to exert a positive effect in ischemic rats by facilitating the
expression of GluA2/3 and postsynaptic density 95 (PSD-95),
as measured by western blotting and transmission electron
microscopy, and by regulating neurotransmitter receptor
genes, specifically by increasing glutamate ionotropic recep-
tor AMPA type subunit 3 (Gria3) expression [71].

NMDA Receptors

NMDA receptors are ionotropic glutamate–gated receptors
that are composed of the NMDA receptor subunit type
(GluN)1, GluN2, and GluN3 subunits. The composition of
NMDA receptors is strictly modulated by activity-dependent
synaptic plasticity during development. Over the past few
years, pre-ischemic treadmill training has been proven to in-
hibit the overexpression of GluN2B and the mRNA expres-
sion of metabotropic glutamate receptor 5 (mGluR5) and re-
duce brain damage, possibly through the phosphatidylinositol
3-kinase (PI3K)/Akt-glutamate transporter-1(GLT-1)-gluta-
mate and PKC-α-GLT-1-glutamate pathways in post-
ischemic rats [72]. Phospho-GluN2B expression in the hippo-
campus of rats is also markedly decreased, and this change
might partially contribute to physical exercise-induced neuro-
protective effects [73]. Recently, by performing western blot-
ting and immunohistochemistry after training, Luo et al. mea-
sured the expression of GluN2A and GluN2B proteins and
found increased levels of GluN2B and decreased levels of
GluN2A proteins in the hippocampus of rats after ischemic
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stroke [74]. Treatment with bis(propyl)-cognitin, an antago-
nist of NMDA receptors, after stroke can potentiate the reha-
bilitative effects of treadmill exercise, probably by increasing
vascular endothelial growth factor (VEGF) expression in the
brain, further demonstrating the key role of NMDA receptors
in exercise-dependent synaptic plasticity [75].

Neurotrophins

There are some common neurotrophins, including BDNF,
GAP-43, and insulin-like growth factor (IGF-1). Increases in
neurotrophins induced by exercise training play important
roles in promoting synaptic plasticity, as shown below.

Exercise improves motor and cognitive impairment in ische-
mic mice following stroke by promoting neurogenesis, angio-
genesis, and synaptic plasticity via the caveolin-1/VEGF signal-
ing pathway, which is related to BDNF [76]. Exercise-induced
paralysis recovery of brain ischemic rats may be related to the
upregulation of both GAP-43 phosphorylated at serine 41
(pSer41-GAP-43) and GAP-43. The possible mechanisms,
which include neurite formation, synaptic connections, and re-
modeling, might be related to the interaction between GAP-43
and calmodulin, PKC, and nerve growth factor (NGF) [59].
Moreover, the combination of physical exercise and Buyang
Huanwu may improve neural behavioral deficits, maintain the
synaptic ultrastructure, and significantly increase the levels of
synaptophysin (SYN),MAP-2, andGAP-43 in rats after cerebral
ischemia [77]. Ploughman et al. indicate that relatively modest
exercise can upregulate the expression of proteins associatedwith
synaptic plasticity, such as IGF-1, synapsin-I, and BDNF, in
brain regions, possibly contributing to motor in rats following
ischemic stroke [78]. In a clinical study, aerobic exercise with
cognitive training, which might be involved in the upregulation
of serum IGF-1 levels, robustly improves cognition in patients >
6 months post-stroke. Therefore, IGF-1 might participate in be-
haviorally induced plasticity [79].

In addition to the abovementioned factors, there are also
many other factors that participate in exercise-induced
neuroplasticity. Physical exercise may improve cognitive per-
formance in patients after stroke through several neurobiolog-
ical mechanisms that are related to growth factors, such as
VEGF [80], which may be mediated by caveolin-1 to promote
synaptic and dendritic plasticity [81].

Taken together, regulating BDNF, GAP-43, IGF-1, and
other growth factors caused by exercise training plays impor-
tant roles in promoting synaptic plasticity. Thus, it is essential
to discuss the important role of neurotrophins in exercise-
dependent neuroplasticity.

Other Synapse-Related Proteins

The expression of synaptic-related proteins is positively correlat-
ed with synaptic plasticity. Exercise training has been proven to

promote synaptic plasticity by increasing the expression of
synaptic-related proteins in cerebral ischemic rats, including
SYN [82], synapsin-I [83], PSD-95 [53, 84], vesicular glutamate
transporter (vGlut)1, vGlut2, and vesicular GABA amino acid
transporter (vGAT) [85]. Immunohistochemistry and western
blotting showed that CIMT significantly increases the expression
of vGlut1, PSD-95, GAP-43, and SYN in the denervated cervical
spinal cord in rats subjected to stroke [56]. In the entorhinal
cortices of rats subjected to ischemic stroke, the levels of SYN
and PSD-95 are increased, as measured by western blotting [84].
SYN and synapsin-I are associated with the packaging, storage,
and release of synaptic vesicles [83]. Rats that undergo exercise
training exhibit a significant increase in SYN expression in the
subcortical areas of the ipsilateral hemisphere, including the den-
tate gyrus, thalamus, and hippocampus [82], which might be
involved in the regulation of PICK1 [68]. The number of
SYN-positive cells is also notably increased, promoting synaptic
plasticity in cerebral ischemia rats [61]. These proteins can ben-
efit axonal growth and the activity of synaptic vesicles, resulting
in synaptic activity and synaptic structure development.

In summary, regulation of AMPA receptors, NMDA recep-
tors, neurotrophins, and other synapse-related proteins plays
important roles in exercise training–dependent synapse plas-
ticity by promoting synaptic structure, synaptic activity, and
remodeling.

Exercise Improves Interhemispheric Connections

Animal Experiments

A severe loss of interhemispheric connectivity related to cor-
responding behavioral deficits and partial recovery during the
chronic phase following stroke in mouse has been observed
through widefield calcium imaging [86]. Contralateral tissues
show increased interhemispheric inhibition compared with
ipsi-infarct tissues following focal ischemic stroke in the fore-
limb motor cortices of mice [87]. Combining robotic rehabil-
itation and inactivation of the contralateral hemisphere may
facilitate general motor recovery and fine motor function ac-
companied by normalizing transcallosal inhibition in post-
stroke mice [87].

Clinical Studies

Interhemispheric motor connections play an important role in
motor function following stroke and differ depending on the
extent of motor impairment. Fractional anisotropy (FA) in the
corpus callosum is obviously downregulated and positively
correlated with motor function in patients with relatively mild
motor deficits, while in patients with relatively severe motor
deficits, motor function is correlated with FA in the
corticospinal tract (CST) [88]. By using diffusion tensor im-
aging (DTI), Carter AR et al. showed that the extent of CST
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damage was negatively correlated with interhemispheric con-
nectivity, particularly the connectivity between the bilateral
central sulci in 23 recruited stroke patients [89]. Hence, inter-
hemispheric connectivity is related to the integrity of the cor-
pus callosum and CST after stroke. Hence, inhibiting contra-
lateral brain tissue might be a beneficial treatment for improv-
ing interhemispheric balance after stroke.

Mildly impaired patients showed improvements in the
function of the affected proximal upper extremity related to
suppression of the contralesional primary motor cortex (M1),
but suppression of the contralesional M1 worsens paretic up-
per limb control in moderate to severely impaired patients.
The effects of inhibiting the contralesional M1 depend on
the integrity of the white-matter tracts that innervate the paret-
ic upper limb from the ipsi-infarcted hemisphere following
stroke [90]. In stroke patients, performing a unilateral volun-
tary hand-grasping task can increase ipsi-lesional M1 activa-
tion [91], and early intensive upper limb training can increase
activation in the ipsi-lesional supplementary motor areas and
anterior cingulate cortex, and reduce the activation of the
contralesional cerebellum [92]. Importantly, excitatory con-
nectivity from the ipsi-lesional to the contralesional M1 is
enhanced by a unilateral voluntary hand-grasping task [91].

In summary, animal experiments and clinical studies have
shown that exercise training can promote interhemispheric
connectivity by increasing activation in ipsi-lesional cerebral
regions, enhancing excitatory connectivity from the ipsi-
lesional to the contralesional M1, and reducing transcallosal
inhibition induced by stroke to facilitate motor function
recovery.

Exercise Promotes Neuronal Regeneration

Newborn striatal neurons appear after ischemic stroke and can
generate functional projections to the substantia nigra, which
might be important for motor functional recovery [44].
Exercise training may significantly facilitate the regeneration
capacity of newborn projection neurons in the ischemic brains
of rats to improve motor function [93]. CIMT-induced recov-
ery is involved in promoting axonal remodeling, survival, and
the regeneration of corticospinal neurons to enhance ipsi-
lesional corticospinal projections [94]. Interestingly, exercise
training may also improve the regeneration of the
contralesional pyramidal tract following ischemic stroke in
rats [95]. Willed-movement therapy increases the expression
levels of GAP-43 and neurotrophin 3 (NT-3), which is likely
involved in nerve repair and regeneration in the ischemic brain
in rats [96]. Specific combinations of growth factors may ac-
tivate endogenous adult neural stem cells to encourage func-
tional recovery and cortical tissue regrowth following stroke
[97]. The combination of physical exercise and cognitive
stimulation has more beneficial effects in increasing adult
neurogenesis than either experimental intervention alone

[80]. In addition, the enhancement of angiogenesis induced
by exercise following ischemic stroke might be associated
with the expression of metalloproteinase membrane type 1-
metalloprotease (MT1-MMP) in cerebral microvessels sur-
rounding the infarct region in rats [98]. Long-term exercise
for 4 weeks facilitates neuroblast differentiation and cell pro-
liferation in a time-dependent manner [99]. The neuronal cell
proliferation induced by exercise has been proven to be in-
volved in increasing myelin basic protein (MBP), PSD-95,
SYN, NeuN, Nestin, B cell lymphoma-2 (Bcl-2), and Ki67
expression and decreasing SMI 32 (a marker of abnormally
dephosphorylated neurofilament protein) expression in the en-
torhinal cortex [84]. Newly generated mature cells are ob-
served in the granule cell layer of the dentate gyrus and might
be related to improvements in memory deficits induced by
long-term exercise [99]. However, early exercise training
might be harmful to neural regeneration in the subventricular
zone (SVZ) following the first week after stroke [100].
Exercise pretreatment for 3 weeks also exerts neuroprotective
effects by decreasing the infarct area, neuronal apoptosis, and
oxidative stress; improving motor function; promoting astro-
cyte proliferation; and increasing angiogenesis after ischemic
stroke [101].

In summary, these results suggest that exercise can pro-
mote axonal regeneration and angiogenesis, increase the num-
ber of newborn neurons, and facilitate the projections from
these newborn neurons.

Exercise Promotes Functional Reorganization of the
Brain

Microstimulation and functional mapping studies have shown
that recovery from stroke damage can lead to surviving brain
areas undertaking the functional roles of impaired brain tis-
sues [102]. After stroke, neuronal reorganization in the peri-
infarct cortex plays a role in improving motor function [103],
which is initiated through cellular reactions to degeneration
[104]. As neurons in the ischemic region are subjected to
death, their axons and synapses degenerate widely in brain
regions, facilitating the generation of new connections among
surviving neurons by instigating regenerative responses. The
new connectivity that emerges from this process has tremen-
dous variable potential in pattern and functional benefit [104].

Behavioral experiences following stroke potently promote
neural reorganization by influencing the activity of regenerat-
ed circuits, as reviewed below. Skilled forelimb reaching
training promotes the projection of neurons to the upper cer-
vical cord, which provide new connections to the denervated
forelimb area in the spinal cord, and these new connections
contribute to motor map reorganization and exercise-induced
task-specific recovery in the secondary motor area [105]. Use-
dependent plasticity caused by repetitive motor training com-
bined with brain stimulation may be associated with the
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reorganization of task-specific multiregional brains. During
trained extensor movements, brain activity in some regions, such
as the contralesional premotor cortex, the contralesional cingulate
motor cortex, and the ipsi-lesional sensorimotor cortex, is signif-
icantly reduced, and this is related to functional improvements in
the affected hands [106]. Monkeys subjected to subthreshold
electrical stimulation plus rehabilitative training show obvious
improvements in motor performance (efficiency, speed, and suc-
cess) that may persist for several months. Large-scale emergence
of new hand representations in the peri-ischemic motor cortex is
observed by cortical mapping [107].

Aging might be a factor influencing exercise-induce func-
tional reorganization after ischemic stroke. After ischemic
stroke, agedmice exhibit markedly larger infarct volumes than
young mice. Task-specific rehabilitation training may im-
prove motor function in both age groups. However, expansion
of the rostral forelimb area is found in young mice, indicating
that reorganization of the motor cortex might be limited by
either the extent of brain injury or aging [108]. Hence, aged
survivors or patients with worse brain injury could receive
combined therapy instead of exercise training alone for a bet-
ter therapeutic effect.

In summary, exercise-mediated post-stroke recovery can
contribute to surviving brain areas undertaking the functional
roles of impaired brain tissues by increasing axonal regenera-
tion and the activation of new connections between surviving
neurons. Moreover, the reorganization of cerebral function is
also associated with the number of newborn neurons and in-
creased dendritic arborization and axonal growth. It is quite
possible that effects that result from exercise training are ac-
companied by alterations in axonal projections and the forma-
tion of new neural circuits from the same regions to other
regions.

Excise Facilitates Neural Compensation Beyond
Infarcted Tissue

Animal Experiments

The compensation of contralesional region exerted an impor-
tant role and has been clarified in the ischemic rats. In our
previous study, CIMT was shown to recruit more neuronal
cells to the innervated network of the affected forelimb in
the contralesional region than in the ipsi-lesional red nucleus
and motor cortex [109]; CIMT also enhances the synapse
number in the contralesional cortex [109] and increases glu-
cosemetabolism in the contralateral hemisphere, including the
cortex insular and acbcore shell [110]. Recently, Gao et al.
found that modified CIMT can effectively decrease glutamate
content in the contralateral hippocampus, increase AMPA re-
ceptor protein, and regulate neurotransmitter receptor–related
genes in the bilateral hippocampus [71]. Together, these re-
sults suggest that CIMT is an effective strategy for facilitating

neural function compensation. After brain injury, CIMT,
which results in reliance on the paretic limb, can enhance the
capacity of the peri-infarct cortex, which benefits paretic fore-
limb function. Such compensation might tend to develop
quickly and is a beneficial strategy for improving deficits.

Although the compensation of contralesional region has
been proven, the compensation of the contralesional CST re-
mains a controversial issue. Zhao et al. demonstrated that
CIMT markedly enhances the number and length of midline
crossings of contralateral corticospinal axons to the denervat-
ed cervical spinal cord in rats subjected to stroke [56].
However, our previous study found that CIMT can contribute
to functional recovery after ischemic stroke by facilitating the
remodeling of the ipsi-lesional CST, as assessed by DTI, and
that this might be related to a decrease in the ratio of p-c-Jun
N-terminal kinase (JNK)/JNK; however, the contralesional
CST does not exhibit obvious remodeling [111]. The reason
for the inconsistent results may be that the experimental ani-
mals had different degrees of brain damage.

Furthermore, the extrapyramidal system also exhibits signifi-
cant functional compensation after stroke. Ishida et al. showed
that individual corticobrainstem pathways exert a dynamic com-
pensatory action for functional recovery through rehabilitative
training following capsular stroke. The corticorubral tract is as-
sociated with intensive rehabilitation-induced recovery of fore-
limb function during the early phase following internal capsule
hemorrhage, but the corticoreticular tract is related to
rehabilitation-induced recovery when the function of the
corticorubral tract is impaired [112]. At the level of cervical
enlargement and the red nucleus, contralesional corticofugal tract
axons exhibit increased plasticity in post-ischemic rats subjected
to skilled reaching training and forced running wheel exercise.
Rat subjected to skilled reaching training exhibit more contralat-
eral corticorubral tract remodeling at the red nucleus level than
rats subjected to forced running wheel exercise [113].

Clinical Studies

The compensation of contralesional region and extrapyramidal
system also was indicated in post-stroke patients in clinical stud-
ies. As demonstrated by DTI, patients show progressive de-
creases in FA in the CST surrounding the ischemic lesion and
progressive increases in FA increases in contralesional brain re-
gions, such as the medial frontal gyrus, and thalamocortical con-
nections that project to the premotor areas, primarymotor cortex,
and somatosensory cortices 4 and 12 weeks after acute subcorti-
cal infarct. The remodeling of contralesional brain regions is
positively correlated with Fugl-Meyer scores and can prompt
early motor recovery [38]. In post-stroke patients with severe
CST injury, the bilateral rubrospinal tract may exhibit changes
in FA and radial diffusivity (RD), indicating the important role of
the rubrospinal tract in the recovery of hand function as shown
by DTI [114].
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In summary, exercise-mediated recovery of post-
stroke damage can contribute to the functional compen-
sation of surviving brain areas involved in limb func-
tion. The possible mechanisms include enhanced activity
and axonal growth of the pyramidal and extrapyramidal
systems in the ipsi-lesional and contralesional hemi-
spheres. However, the role of the healthy hemisphere
in post-stroke recovery is still controversial. As noted
above, contralesional brain tissue is likely to be a main
source of new neural connections in denervated regions
after larger infarcts. Behavioral experience may be the
biggest driver of these new connections to subserve
functional improvements in the paretic forelimb.

Exercise Improves Motor and Cognitive
Function

Current Exercise Strategies

Common exercise strategies include running exercise, skilled
reaching training, voluntary exercise, and forced exercise.
There are also many exercise strategies that can provide ben-
eficial environment and/or effect in recovery of motor func-
tion in post-stroke patients.

Running Exercise and Skilled Reaching Training

Running exercise may improve learning and attention during
the early phase of stroke rehabilitation by enhancing neuro-
trophic factors and other modulators related to synaptic plas-
ticity [49]. However, it has a negative effect on neurogenesis
in the post-ischemic hippocampus, as assessed by
bromodeoxyuridine (BrdU) staining. The number of BrdU-
labeled cells is enhanced in the granule cell layer (GCL) and
subgranular zone (SGZ) in response to ischemic stroke but is
decreased 14 days after ischemia in response to running exer-
cise [115]; this is opposite of the increased neurogenesis in-
duced by running exercise in the normal hippocampus [116].

The levels of neurotrophic factors may be increase in rats
undergoing treadmill or skilled reach training. There are no
obvious differences in the levels of NGF and BDNF between
animals subjected to the two forms of exercise [117]. Skilled
reaching training has greater effects in promoting motor re-
covery and axonal plasticity in the corticorubral tract after
cerebral ischemia than forced running wheel exercise [113].
Reach training combined with running may significantly im-
prove skilled reaching ability, but there is no improvement in
postural support or gait in rats after ischemic stroke [49].
Skilled reaching training is likely more beneficial for fine
exercise ability.

Forced Exercise and Voluntary Exercise

Aerobic exercise, particularly forced exercise, should be
regarded as an effective strategy for accelerating the recovery
of motor function after stroke, as Linder et al. proved that
forced exercise before upper extremity repetitive task practice
results in a greater acquisition than voluntary or stroke-
associated training [118]. Early moderate forced exercise for
4 weeks beginning 24–48 h post-stroke has beneficial effects
by alleviating lesion volume and inhibiting inflammation and
oxidative damage in perilesional tissue [119]. CIMT, a com-
mon type of forced exercise in the clinic, rescues deficits in
skilled movements following ischemic stroke and facilitates
the recovery of fine movement [48]. A meta-analysis showed
that low-intensity CIMT might have more beneficial effects
than high-intensity CIMT in patients in the acute or subacute
stage of stroke [120]. However, compared with forced exer-
cise, voluntary exercise might significantly improve cognitive
function. Both types of exercise may increase PSD-95, MAP-
2, synapsin I, and Tau levels in the hippocampus, as deter-
mined by western blotting and immunohistochemistry. There
are no significant differences in the reduction in neuronal and
dendritic loss induced by two-pattern exercise, as assessed by
Nissl staining [118].

Exercise Strategies in Clinic

There are various exercise rehabilitation procedures that have
been performed in the clinic. Patients with residual
hemiparesis underwent a 3-week balance training (Wii Fit
for 60 min/day, 3 times/week), which promoted functional
recovery by influencing neural plasticity possibly through an
increase in corticomotor excitability of the tibialis anterior
muscle [121]. Subjects who performed ten-session biofeed-
back balance training with inertial sensors showed a greater
improvement and better compliance in balance skills than
those who performed ten-session conventional balance train-
ing, indicating that the biofeedback system is probably in-
volved in enhancing neuroplasticity to improve postural and
balance in subacute stroke patients [122].

Moreover, wrist extension training that is externally paced
at the preferred movement frequency promotes use-dependent
plasticity [123]. Chest expansion exercise plus transcutaneous
electrical nerve stimulation (TENS) may effectively improve
gait ability and trunk control in chronic stroke patients [124].
Device-assisted mirror symmetrical bimanual movements for
4 weeks may accelerate upper limb function recovery at the
subacute stage following first-ever ischemic stroke [125].
Participation in a comprehensive rehabilitation program for
25 days during the subacute stroke phase was shown to have
an important effect on upper limb function. Compared with
men, women obtained better functional rehabilitation in all of
the parameters [126]. Video games can induce neuroplasticity
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and provide a beneficial environment in which patients can
perform repetitive, functionally meaningful movements.
Video games are designed to focus on several fundamental
principles, including reward, challenge, goals, and meaningful
play, which are important to rehabilitation [127].

In summary, skilled reaching training might have a better
effect on motor function improvement as compared with run-
ning exercise. Voluntary and forced exercise might not induce
significantly different alterations in neuroplasticity. There are
many other types of exercise therapies such as device-assisted
mirror symmetrical bimanual movements, biofeedback bal-
ance training, and video games, which have been proven to
exert beneficial effects in post-stroke patients in clinic.

High-, Moderate-, and Low-Intensity Exercise

The intensity of exercise might contribute to the recovery of
neural function after stroke. Exercise is commonly divided
into three intensities: high, moderate, and low intensity. The
related clinical studies and animal experiments have been pre-
sented as shown below.

A meta-analysis suggested that HIT as a novel intervention
might be safe for cardiopulmonary rehabilitation following
stroke and is beneficial for cardiorespiratory fitness in post-
stroke survivors [16]. High-intensity interval training of the
neurologically less affected arm for 5 weeks contributes to
improving cortical and spinal plasticity and bilateral strength
in chronic stroke participants [128]. A maximal graded exer-
cise test may trigger only slight changes in neuroplasticity in
post-stroke patients. However, a single-bout high-intensity
training (HIT) initiated immediately following practicing a
motor skill may promote improvements in skill retention,
probably accelerating motor recovery [129]. In a clinical

study, patients with moderate hemiparesis after chronic stroke
receiving low assistance (55% success at hitting targets) or
high assistance (82% success at hitting targets) showed signif-
icant improvements in self-efficacy of hand function, depres-
sion, and impairment-based and functional motor outcomes
following chronic stroke at the 1-month follow-up, but the
high assistance group showed better improvements in motor
outcomes, particularly for subjects with more severe finger
motor dysfunction [130].

Compared with moderate- or low-intensity exercise, HIT is
more effective for neurological function recovery after stroke,
as discussed by a systematic review [15]. Moderate-intensity
training (MIT) is a potential rehabilitative therapy for improv-
ing mobility and exercise capacity following stroke by regu-
lating neuronal plasticity and inflammatory processes [131]. A
meta-analysis showed that low-intensity CIMT might have
more beneficial effects than high-intensity CIMT in the acute
or subacute stage of stroke [120].

In animal experiment, low-volume HIT might be more ef-
fective than MIT in promoting brain plasticity after ischemic
stroke, as it results in more effective motor function improve-
ment [132], possibly through an increase in the ratio of
mBDNF/proBDNF in the hippocampus [74]. In addition,
compared with those that undergo high-intensity exercise, rats
that undergo low-intensity exercise exhibit better spatial mem-
ory performance and obviously increased dendritic complex-
ity in the bilateral hippocampus [53].

As noted above, HIT has better benefits for stroke-induced
dysfunction than moderate- and low-intensity training. For
individuals, neuroplasticity is likely dependent on exercise
intensity. The increased number of changes in neuroplasticity
caused by high-intensity exercise can lead to better neural
function recovery. Moreover, low-intensity exercise might

Fig. 1 The mechanisms of exercise-induced neuroplasticity after ischemic stroke
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exhibit better spatial memory performance in ischemic rats
and exert more beneficial effects than HIT in the patients of
acute or subacute stage of stroke. Thereby, the effects of high-,
moderate-, and low-intensity exercise in patients and animals
remain to be explored.

Robot-Assisted Movement, a Novel Exercise Method

Robot-assisted movement is increasingly being applied for
rehabilitation therapy in post-stroke patients. Clinical testing
on 10 acute stroke survivors showed that a wearable robotic
device promoted isometric torque generation. Early in-bed
rehabilitation using a wearable robotic device combined with
active and passive movement training contributed to improv-
ing motor control ability and promoting neuroplasticity [133].
Robot-assisted training for 1 month can improve crucial psy-
chological outcomes, including motor learning and memory
in patients with chronic stroke, and its effectiveness appears to
result at least partially from proprioceptive stimulation [130].

Task-oriented rehabilitation robotics is the most
promising approach and is based on the current con-
cepts of practice-induced neuroplasticity and motor con-
trol/learning. Its clinical application focuses on grasping
and manipulating task training using commercially
available tactual robotic devices [134]. In a clinical
study, patients received training at home with an MR-
compatible hand-induced robotic device. Functional
magnetic resonance imaging (fMRI) results revealed
connectivity alterations in the premotor cortex, cerebel-
lum, M1, and supplementary motor area (SMA), sug-
gesting that M1 dysfunction can benefit from the en-
hancement of SMA activity. Therefore, connectivity al-
terations in motor areas might contribute to improve-
ments in the functionally abnormal M1 in post-stroke
survivors with motor dysfunction [135].

In summary, robot-assisted therapy is effective in improv-
ing upper limb motor function, learning, and memory in
stroke patients, and the possible mechanism involves improv-
ing neuroplasticity.

Conclusion

Herein, we discussed recent studies on the mechanisms of
exercise-induced neuroplasticity after stroke, analyzed the appli-
cation of exercise rehabilitation, and discussed a novel exercise
therapy for motor and cognitive recovery after ischemic stroke
related to influencing neuroplasticity. As shown in Fig. 1, exer-
cise facilitates neuroplasticity inmultiple ways, including by pro-
moting the compensation of surviving brain areas; improving
interhemispheric connections; increasing synaptic plasticity
through regulating neurotrophins, synaptic activity, and structure;
and accelerating neuronal reorganization and regeneration.

Based on research on neuroplasticity in the brain, exercise reha-
bilitation targeting neuroplasticity is an area that requires further
research to improve neuronal function after stroke. In addition,
robot-assisted therapy is effective in improving upper limbmotor
function, learning, and memory in stroke patients, and the possi-
ble mechanism involves facilitating neuroplasticity. This type of
novel exercise therapy should be widely applied in the clinic
worldwide to help stroke patients.
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